
MICROTUNING MIDI STREAM USING MICROCONTROLLER

Riku Itäpuro

Tampere University of Technology
riku.itapuro@iki.fi

ABSTRACT

We present a simple microcontrol device for modifying a
stream of MIDI data in real-time to achieve a better music
perception via an enhanced tuning. Using MIDI is ideal,
because it transmits only the metadata of music, not actual
timbre. The pitch only is important here. Musical scales and
their tuning are inherently static on equal tempered (ET) in-
struments like keyboards, but the tuning in pure style sounds
better for some musicians. With a dynamic tuning, we can
make an electrical instrument superior to a static ET-tuned
instrument. There exist few such thing on market, but not on
free software. Earlier methods have used multiple MIDI chan-
nels and Pitch Bend to achieve polyphonical tuning while our
approach utilizes polyphonic aftertouch (PAT) controlling
messages to save MIDI channels.

1. INTRODUCTION

This paper presents a microcontrol device which filters
Musical Instrument Digital Interface (MIDI) data between
controller (MIDI-keyboard) and sound generator (MIDI-
synthesizer). MIDI defines both hardware communication
interface and protocol for musical metadata. MIDI has been a
universal connector between musical instruments for almost
30 years.

The main goal is to study how changing tone’s pitch can
result sometimes better sounding result. Solution can also be
used as microtonal fixed tuning for alternate scales. Some
music theory background will be presented here. In this study
term microtuning means altering individual note’s pitch while
tuning means shifting master tune of an instrument.

Musical scales and tuning in western music are inher-
ently static since 1800’s when equally tempered tuned (ET)
pianoforte’s success over harpsichords’ and claviers’ was ev-
ident [1]. ET means, that every pair of adjacent notes has an
identical frequency ratio. In western music frequency ratio
of 2 is called an octave and it is divided to 12 tone equal
semitones (12-TET). On other tuning systems notes are not
always tuned to same pitch relations, but the tuning depends
either from division of scale or from other together sound-
ing notes which makes it dynamic. Electronic instruments
and acoustic piano suffer a lot from 12-TET, even when the

western ear is used to it. Yet musicians can hear difference
between pure and ET tuning. Pure tuning can be heard for ex-
ample at barbershop or trombone quartets, where musicians
microtune their voice continuosly according to placement
of together sounding notes. So problem is that tuning can
not be defined beforehand. With dynamic tuning, we can
make electrical instruments superior to static (and ET) tuned
instruments and lessen the distance to acoustic world. This
is an important problem also because for author’s knowledge
there exist only few similar products on market, but they all
are patented. On spirit of open-source, everyone has freedom
to learn how to make things for themselves despite patents.

Research methods include studying mathematical and
acoustical theories, programming, prototyping device and
measuring humans perception to final product. We propose
to implement solution and give final product to both civil-
ians and musicians to judge difference between normal and
resulting output.

When succeeding, device has broad availability for users,
because it will be cheap (less than 20 EUR) and uses open
hardware and software. Because the solution is still work in
progress, there exist no yet absolute numbers for efficiency.
It will be fast enough for what it tries to accomplish, which
is glimpse of better sounding tomorrow.

2. RELATED WORK

There exists computer music software algorithms for off-
line, online tuning and static mapping. Motivation for our
research work comes from Hermode tuning [2] (1989), which
describes algorithm used on few commercial synthesizers
and computer sequencer programs, which are both expensive
and closed to user.

Almost similar to our method is Moussa’s patented in-
vention to use Aftertouch [3]. His product also considers
network consisting of multiple instrument networks where
different instruments use different tuning methods.



Table 1. Comparison of ET and Pure Tuning
Key [C1 − C3] C1 D1 E1 F 1 G1 A1 B1 C2 D2 . . .
ET Tuning [cents] 0 200 400 500 700 900 1100 1200 1400 . . .
Pure Tuning [cents] 0 204 386 498 702 884 1088 1200 1404 . . .

ET Tuning [fraction] 1:1 6
√
2 3
√
2

12
√
25

12
√
27

12
√
29

12
√
211

12
√
212 = 2 . . .

Pure Tuning [fraction] 1:1 9:8 5:4 4:3 3:2 5:3 15:8 2:1 17:8 . . .

3. ACOUSTIC AND MUSIC THEORY
BACKGROUND

Frequency (f ) ratio of 2 is called an octave and it is divided to
12 semitones (also called halftones) or 1200 cents. Comput-
ing with cents is easier than with frequencies. Relationship
between frequency-ratios and cents is

f1
f2

= 2
cents
1200 . (1)

Intervals on Pure tuning derive from lowest possible nom-
inators ie. when intervals’ frequencies are related by a small
integer ratios they are said to be in consonance. It has been
shown that 12-tone tuning can not satisfy perfect chords,
because there are so wide variations on pitch for example
on Major 3rds on Table 1, column E1 showing comparison
between ET and Pure C major scales.

On ET, notes are evenly distributed, so each note is multi-
ple of 100 cents away from base note. Intervals are building
blocks for chords. Comparison between Semitone, Whole
Tone, and Major Third on ET and Pure Tuning in cents is
presented on Table 2.

Human perception of pitch difference is about 5 cents.
”You can hear about a nickel’s worth of difference” has been
said, but that depends also on sound level, duration, change
time and musicality of listener. Alternation of G-note from
700 to 702 cents might go unnoticed to many, but changing
note E from 400 cents to 386 can not go unnoticed.

Without hearing the difference, it can also be visualized
using Lissajous figures. Figure 1 and Figure 2 show the
difference between Pure and ET-tuned major third interval.
Notice less variation and more symmetry on Pure interval.
Lissajous figures can be made also with mechanical harmono-
graph [4]. Figures here have been drawn with Wolfram Alpha
with commands below figures.

Table 2. Characteristics of ET and Pure Tune intervals
Interval name Pitch [cents] Remarks
HalfTone ET 100 Always

HalfTone Pure ˜100 Depends on scale
Whole Tone ET 200 (100+100)

Whole Tone Pure 204 (114+90)
Major 3rd ET 400 Always

Major 3rd Pure 386 Always

Fig. 1. Lissajous presentation of Pure major 3rd interval:
plot(x, y) = sin(t), cos(t ∗ 3

√
2f), t = 0, 20

Fig. 2. Lissajous presentation of ET major 3rd interval:
plot(x, y) = sin(t), cos(t ∗ 5/4), t = 0, 20

4. ON IMPLEMENTATION

Existing parts are MIDI keyboard for controlling and MIDI
sound generator for sound producing. A well-documented
and open Arduino Duemilanove ATMega 328 microcon-
troller board was programmed to alter MIDI data stream.



Fig. 3. Arduino Duemilanove micro-controller(bottom) with
MIDI-shield(top). MIDI-connectors (IN & OUT) on left,
buttons and controllers on right (available for programming)

It has an MIDI shield which connects Arduino’s serial I/O to
DIN-MIDI interface, which connects to both MIDI-device
via MIDI cables. Some soldering was needed to attach
buttons, potentiometers and DIN-type MIDI interfaces on
board. Existing model had broken surface mounted compo-
nent which was replaced with an old fashioned resistor. The
picture of Arduino is shown in Figure 3.

Arduino board has small but sufficient 32KB flash mem-
ory for program itself, but only 2KB SRAM for variables,
heap, and stack. That may be limitation for careless program-
mer. Current program code uses about 7KB of flash. MIDI
protocol works on 31250 Bauds which is both low speed
and incompatible with many existing serial protocol speeds.
Arduino can be powered with 9V-battery and does not need
external monitor or keyboard, so it is much better than even
smallest computer or laptop. On development phase power
was still drawn from computer’s USB-connector.

Because MIDI sends only controlling elements of music
and not the actual timbre, it takes less bandwidth. There
is no need for pitch recognition, because pitch is already
included in 3-byte MIDI NOTE-ON message. An adjustment
based on relations between different notes can be computed
fast. The solution allows notes to be microtuned by dividing
semitones yet to another 128 smaller steps. Most people can
not separate two pitches, which are less than 1 cent apart
from each other, so resolution

100cents

128
= 0.78125cents, (2)

while less accurate than earlier Pitch Bend method’s

100cents

16384
= 0.0061cents, (3)

is still sufficient for everyday use. Our solution uses ±14
steps (±11cents) for tuning one note.

The program uses Arduino’s MIDI-library [5]. Software
solution starts by reading incoming keyboard signals with
help of the MIDI-library to a data structure. The distance
between each note with respect the root note (that is the
lowest note) can be mapped with help of the interval table.
The workflow of this is shown in Figure 4. Later, also chord
balancing is planned. Balancing means, that the chord is
set in balance both on the vertical axis and on historical
respective so, that earlier changes will smooth future changes.
One can also in future control how strength tuning will be:
25-, 50-, 75- or 100-percent strict Pure Tuning.

Early tests show progress on first tasks. Played notes are
tuned in almost not audible delay in real time. No optimiza-
tions have been made yet. Command ’All-notes-off’ must
still be implemented for panic, because small input buffer
size can miss some NOTE OFF messages from keyboard.
Without corresponding NOTE OFF message one note will
stay audible forever.

5. LIMITATIONS

Study gave out following limitations: There was no metric
available to measure the quality of the new tuning other than
human ear. Measuring the processing delay was difficult,
because microcontroller misses realtime clock. Used sound
generator must recognize and map polyphonic aftertouch
messages and apply depth of tuning, but this needs to be
done only once. Many voices on sound bank were using a lot
of unnecessary vibrato and other effects on their timbre, while
pure sinusoidal or square wave tones were best on testing.
Notes must now be played from highest to lowest order so
that program recognizes lowest tone, but that limitation is
easy to correct. Human perception for tone changes may set
limitation for computations of single alternation. Only Pure
Tuning is implemented. Least limitating components are on
controlling MIDI device: it needs to be able to send NOTE
ON messages.

6. CONCLUSION

Used study methods included empirical testing and imple-
mentation of basic functionality of tuning device but lacked
some of the planned parts. Implementation of the micro-
controlled device shows unique features, but is still a toy
compared to the planned model. Yet the current limitations
do not hinder continuous developing of the model.

Future work on this topic might consider continuing with
software implementation, because prototype here showed that
it is possible to make a difference on tuning with minimal
hardware. One possibility would also be to use simulators
instead of the real device for testing.



Arduino Microcontroller

Sound Generator

Programmable
buttons

MIDI Shield

MIDI
IN

MIDI
OUT

MIDI
NOTE-ON

message

MIDI
NOTE-ON &
PAT messages

MIDI controller

Feed NOTE-ON
into datastructure

Analyze and
correct

Generate Note-ON
and PAT messages

PROGRAM inside Arduino

Fig. 4. Workflow of dynamic tuning.

REFERENCES

[1] G. Green, “History of Piano Tuning,” Online. Cited 2013-12-08,
2004.

[2] W. Mohrlok. (1999) Original implementation. [Online].
Available: http://www.hermode.com

[3] A. S. Moussa, “Perception-Based Microtuning over MIDI Net-
works,” IEEE Multimedia, vol. 13, no. 1, pp. 56–64, 2006.

[4] A. Ashton, Harmonograph: A Visual Guide to the Mathematics
of Music, ser. Wooden Books. Walker & Company, apr 2003.

[5] Arduino MIDILibrary. Online. Cited 2013-12-02. [Online].
Available: http://playground.arduino.cc/Main/MIDILibrary

http://www.hermode.com
http://playground.arduino.cc/Main/MIDILibrary

	 Introduction
	 Related work
	 Acoustic and music theory background
	 On implementation
	 Limitations
	 Conclusion

